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Motivated by engineering applications of subsea installation by deepwater construction vessels in oil
drilling, and of aid delivery by unmanned aerial vehicles in disaster relief, we develop output-feedback
boundary control of heterodirectional coupled hyperbolic PDEs sandwiched between two ODEs, where
the measurement is the output state of one ODE and suffers a time delay. After rewriting the time-
delay dynamics as a transport PDE of which the left boundary connects with the sandwiched system,
Keywords: a state observer is built to estimate the states of the overall system of ODE-heterodirectional coupled
Distributed parameter system hyperbolic PDEs-ODE-transport PDE using the right boundary state of the last transport PDE. An
Delay observer-based output-feedback controller acting at the first ODE is designed to stabilize the overall
Boundary control system using backstepping transformations and frequency-domain designs. The exponential stability
Oildrilling , results of the closed-loop system, boundedness and exponential convergence of the control input are
Unmanned aerial vehicles proved. The obtained theoretical result is applied to control of a deepwater oil drilling construction
vessel as a simulation case, where the simulation results show the proposed control design reduces
cable oscillations and places the oil drilling equipment to be installed in the target area on the sea

floor. Performance deterioration under extreme and unmodeled disturbances is also illustrated.
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1. Introduction
1.1. Motivation

The first motivation of this work arises from off-shore oil
drilling, where some equipment, such as a subsea manifold, a sub-
sea pump station, a subsea distribution unit along with associated
foundations, flowlines and umbilicals should be installed at desig-
nated locations (Standing, Mackenzie, & Snell, 2002; Stensgaard,
White, & Schiffer, 2010) around the drill center on the seafloor.
The installation of the equipment is completed by deepwater
construction vessels (DCVs) (Stensgaard et al., 2010), because the
installation sites are located outside a radius 45 m of the floating
drilling platform (Fig. 2 in Stensgaard et al., 2010) and cannot
be accessed by the huge floating drilling platform which has
limited access and mobility (Stensgaard et al., 2010), and some of
the equipment, such as flowlines, umbilicals, should be installed
in advance to prepare to hook up the floating drilling platform
when it arrives. The DCV is shown in Fig. 3, where the top of
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the cable is attached to a crane on a vessel at the ocean surface
and the bottom attached to equipment to be installed at the sea
floor, referred to as payloads hereafter. The traditional method in
underwater installation by DCVs is regulating the vessel dynamics
position and manipulating the crane to obtain the desired heading
for the payload (How, Ge, & Choo, 2010). It is not suitable for the
deeper water construction in offshore oil drilling (more than a
thousand meter) because the cable is very long when the payload
is near the seabed, which would increase the natural period of the
cable-payload system and introduce large oscillations (How et al.,
2010; Wang, Koga, Pi and Krstic, 2018). The cable oscillations
would cause large offset between the payload and the desired
heading position of the crane, namely the designated installation
location. In addition to large oscillations of the long cable, another
challenge in the subsea installation is the existence of a sensor
delay (How et al., 2010) which is due to the fact that the sensor
signal is transmitted over a large distance from the seafloor to the
vessel on the ocean surface through a set of acoustics devices (Ch.
10.6.6 in Sharma, 2017). It would result in information distortion
or even make the control system lose stability. It is vital to design
a delay-compensated control force at the onboard crane to reduce
the cable oscillations and then place the equipment in the target
area on the sea floor.

The second motivation is aid delivery to dangerous and in-
accessible areas, such as flood, earthquake, fire, and industrial
disaster victims via unmanned aerial vehicles (UAVs) (Guerrero,
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Mercado, Lozano, & Garcia, 2015; Palunko, Cruz, & Fierro, 2012),
where food, first-aid kits, referred to as suspended objects or
payloads hereafter, are tied to the bottom of a cable, of which
the other end is hanged to an UAV, i.e., a structure of UAV-cable-
payload. The swing/oscillation of cable-payload would appear
during the transportation motion due to the properties of the
cable and external disturbances, such as wind, which may cause
damage to the suspended object, the environment and the people
around (Guerrero et al., 2015). At the end of the transport motion,
when the UAV arrives at the location directly over to the rescue
site and is ready to land the aid supplies, the suspended object
naturally continues to swing (Palunko et al., 2012) which makes
precisely placing these aid supplies at the target position difficult.
Therefore, rapid suppression of oscillations of the cable and sus-
pended object through a control force provided by rotor wings
of the UAV is required. The measurement can be the oscillation
acceleration of the suspended object by an accelerometer placed
at the bottom end of the cable. Sensor delay would exist in the
process of data acquisition, transmission and integration calcula-
tion to obtain the payload oscillation displacement which is used
in constructing the observer and controller. In addition to aid
delivery in disaster relief, UAV delivery is also used in some com-
mercial cases to reduce labor cost. For example, some companies
use UAVs to transport cargos in storehouses or lift and position
building elements in architectural construction (Willmann et al.,
2012). Some logistics companies have also begun to use UAVs to
deliver packages in a small area (Guerrero et al., 2015).

The vibration/oscillation dynamics of cables are distributed
parameter systems modeled by wave PDEs (He, He, Shi, & Sun,
2017; He, Meng, He, & Ge, 2018; Wang, Koga et al., 2018), and the
crane/equipment and UAV/supplies at two ends of the cable can
be regarded as lumped tip payloads described by ODEs (He & Ge,
2012, 2016). For the sake of order reduction, the wave PDEs with
viscous damping terms describing the cable material damping
can be converted to a class of heterodirectional coupled hyper-
bolic PDE systems (Anfinsen & Aamo, 2017; Deutscher, 2017a,
2017b; Deutscher, Gehring, & Kern, 2019) via Riemann trans-
formations (Wang, Pi and Krstic, 2018). Therefore, the control
problems in the aforementioned two applications come down to
a theoretical problem about delay-compensated boundary control
of a sandwiched coupled hyperbolic PDE system.

1.2. Control of PDE sandwiched system

Boundary control designs of a transport PDE sandwiched by
two ODEs (Anfinsen & Aamo, 2018; Krstic, 2008, 2010a), vis-
cous Burgers PDE (Liu & Krstic, 2000) or heat PDE (Wang &
Krstic, 2019a) sandwiched systems were developed in the pre-
vious research. Control design of the coupled hyperbolic PDE
sandwiched system mentioned in the last section is more chal-
lenging because of the in-domain instability which comes from
in-domain couplings between PDEs. Recently, some results about
state-feedback control of a coupled hyperbolic sandwiched sys-
tem was proposed in Bou Saba, Bribiesca Argomedo, Di Loreto,
and Eberard (2017), Bou Saba, Bribiesca-Argomedo, Loreto, and
Eberard (2019) and Wang, Krstic and Pi (2018). Based on observer
designs, output-feedback control of the coupled hyperbolic PDE
sandwiched system was designed in Deutscher, Gehring, and Kern
(2018) and Di Meglio, Lamare, and Aarsnes (2020). However, the
aforementioned research has not investigated delay compensa-
tion (Bou Saba et al., 2019; Di Meglio et al., 2020 only achieve
robustness to a small delay) in boundary control of sandwiched
PDE systems. Actually, time-delay exists frequently in the practi-
cal engineering, especially the sensor delay, which exists in most
practical sensor-used feedback systems. Considering time-delay
compensation in the control design is an important step to apply
theoretical results into practice.

1.3. Sensor delay compensation

The topic of sensor delay compensation has received much at-
tention in the past three decades. In an advanced result presented
in Krstic (2009) and Krstic and Smyshlyaev (2008), the sensor
delay was captured as a transport PDE and then the original plant
of ODE with sensor delay was rewritten as an ODE-transport PDE
cascaded system without delay, before the observer/controller
designs were conducted via backstepping. Therein, the observer
was built as a “full-order” type which estimated both plant states
and sensor states, compared with some classical results about
sensor-delay-compensated observer designs (Ahmed-Ali, Karafyl-
lis, & Lamnabhi-Lagarrigue, 2013; Cacace, Germani, & Manes,
2010; Germani, Manes, & Pepe, 2002) which only estimated plant
states, namely “reduced-order” type. Using a model-based predic-
tor, observer design for ODE systems with a time-varying sensor
delay was presented in Krstic (2010b). Time-varying sensor delay
compensation was also considered in Wang, Pi, Hu, and Zhu
(2020) which designed a delay-compensated observer to estimate
vibration states of a wave PDE modeled cable elevator. Boundary
stabilization of a wave PDE whose boundary observation suffers
a time delay was also proposed in Guo and Xu (2008). In the
aforementioned work, the sensor delay was considered in the
plant which is an ODE or a simple form PDE while the sensor
delay in this paper exists in a more complex plant which is a
sandwiched PDE system.

1.4. Main contribution

e Some restrictions on the proximal ODE structure in the
previous results about boundary control of ODE-hyperbolic
PDE-ODE sandwiched systems are relieved, such as the first-
order and scalar form (Anfinsen & Aamo, 2018; Di Meglio
et al, 2020), a chain of integrators (Wang, Krstic et al.,
2018), det(CoBy) # 0 (Deutscher et al., 2018) and By being
invertible (Bou Saba et al., 2017).

e Compared with (Bou Saba et al., 2019) which first addressed
the left invertible type proximal ODE in sandwiched PDEs,
this paper further proposes observer-based output-feedback
control design using a delayed measurement of which the
delay length is constant and arbitrary. Compensation of sen-
sor delay has not been investigated in control of sandwiched
systems before. This is a more challenging task because
the plant is extended to ODE-coupled hyperbolic PDEs-
ODE-transport PDE after rewriting the delay as a transport
PDE.

e The obtained theoretical result is applied to oscillation sup-
pression of a DCV with compensating the sensor delay aris-
ing from large-distance transmission of the sensing signal
via acoustics devices, where only one control force at the
onboard crane is required while one more control force
applied at the payload is required in How, Ge, and Choo
(2011).

For complete clarity, the comparisons with the recent results
of boundary control of sandwiched systems are summarized in
Table 1.

1.5. Organization

The concerned model and the control task is described in
Section 2. Observer design is proposed in Section 3. Therein, three
transformations are used to convert the observer error system
to a target observer error system whose exponential stability
is straightforward to obtain, where all the dynamics output in-
jections required in constructing the observer are determined.
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Table 1
Comparisons with recent results of boundary control of linear ODE-PDE-ODE systems.
Types of ODEs Types Types of Delay Application to
of actuation of PDEs control systems compensation practical problems
Anfinsen and Aamo (2018) First-order and scalar Transport PDE Output-feedback X X
Di Meglio et al. (2020) First-order and scalar 2 x 2 coupled transport PDEs Output-feedback X X
Wang, Krstic et al. (2018) A chain of integrators 2 x 2 coupled transport PDEs Output-feedback X X
Wang and Krstic (2019a) A chain of integrators Heat PDE Output-feedback X X
Deutscher et al. (2018) det(CoBy) # 0 n coupled transport PDEs Output-feedback X X
Bou Saba et al. (2017) By being invertible 2 x 2 coupled transport PDEs State-feedback X X
Bou Saba et al. (2019) Left invertible 2 x 2 coupled transport PDEs State-feedback X X
This paper Left invertible 2 x 2 coupled transport PDEs Output-feedback v DCV
+/ denotes “included” and x denotes “not included”.
Observer-based output-feedback control design is proposed in A; = Ay — ML Cle ™, 9)
Section 4, where two transformations are applied to transform At — As — BoF. (10)
the observer to a so-called target system in a “stable-like” form AO - 0%o.
except for the proximal ODE which is influenced by perturbations Ay = Ay — BiFy. (11)

originating from PDEs and the distal ODE. After representing this
target system in the frequency domain to obtain the relationships
between the states of the proximal ODE and those perturbation
states, the proximal ODE is reformulated as a new ODE without
external perturbations in the frequency domain, and then the
stabilizing control input is designed. The exponential stability of
the closed-loop system and the boundedness and exponential
convergence to zero of the control input are proved in Section 5.
The obtained theoretical result is applied to oscillation suppres-
sion and position control of a DCV used for seabed installation as
a simulation case in Section 6. The conclusions and a discussion
of future work are provided in Section 7.

2. Problem formulation
2.1. Model description

The plant considered in this paper is

X(t) = AoX(t) + Eow(0, t) + BoU(t), (1)
z(0, t) = pw(0, t) + CoX(t), (2)
zi(x, 1) = —qizx, t) — crw(x, t) — c1z(x, t), (3)
we(X, t) = Qwx(x, t) — cow(x, t) — crz(x, t), (4)
w(1,t) = qz(1,t) + G Y(¢), (5)

Y(t) = ArY(t) + Biz(1, 1), (6)
Your(t) = ClY(t -1) (7)

V(x,t) € [0, 1] x [0, co). The block diagram of (1)-(7) is shown
in Fig. 1. X(t) € R™1, Y(t) € R™! are ODE states. z(x,t) €
R, w(x, t) € R are states of the 2 x 2 coupled hyperbolic PDEs
with initial conditions (z(x, 0), w(x, 0)) € L?(0, 1)xL?(0, 1). T is an
arbitrary constant denoting the time delay in the measurement.
U(t) is the control input to be designed. c;, c; € R and Eg € R™!
are arbitrary. q; and g, are positive transport velocities. g, p € R
satisfy Assumption 1. Ag € R™", By € R™!, G € R™" A; €
R™™ By e R™ 1 C; e RM™™ satisfy Assumptions 2-3.

3
*@ and q#0.

This assumption will be used in the output-feedback control
design in Section 4.

Q
Assumption 1. p, g satisfy |pq| < e®

Assumption 2. The pairs (Ao, Bo), (A1, B1) are stabilizable and
(Ao, Go), (A1, Cq) are detectable.

According to Assumption 2, there exist constant matrices Lo,
L, Fy, F1 to make the following matrices Hurwitz:

Ao = Ag — LoCo, (8)

Note that A; — e™1L;Cie~™1 has the same eigenvalues as A; —
L1Cq (Krstic & Smyshlyaev, 2008).

Assumption 3. (Cy, A, Bp) satisfy

det([SI EOAO BOOD #0 (12)

for all s € C, R(s)>0

Assumption 3 is about matrices of the proximal ODE-X(t),
namely actuator dynamics. Even though zeros in the closed right-
half plane are excluded here while the zeros are allowed in
some previous results on control of sandwiched PDE systems,
such as (Deutscher et al., 2018), this assumption relieves some
restrictions on the structure of the proximal ODE in the existing
literature (such as Ag, By, Co being scalar in Anfinsen & Aamo,
2018; Di Meglio et al., 2020, By being invertible in Bou Saba et al.,
2017, det(CoBy) # 0 in Deutscher et al, 2018, or a form of a
chain of integrators in Wang & Krstic, 2019a; Wang, Krstic et al.,
2018) (Bou Saba et al., 2019). This assumption is equal to the
existence of a stable left inversion system (Moylan, 1977) of (1)
and is used in the control input design in Section 4.3.

Assumption 4. (Cy, A1, By) satisfy

det([é:e__é‘ll B]}) £0 (13)

for all s € C, R(s)>0.

Assumption 4 is about matrices of the distal ODE-Y(t) with a
sensor delay 7 in the measurement output state. This assump-
tion also prohibits the zeros of the ODE subsystem (Cq, A1, By)
are located in the closed right-half plane. It is not particularly
restrictive and (Ci, A1, B1) is still quite general covering many
application cases. This assumption is used in the observer design
for the overall sandwiched system with the delayed measurement
in Section 3. Note that if the sensor delay is zero, this assumption
has the same form as Assumption 3.

Remark 1. The design in this paper also can be suitable for
collocated control, namely the measurement is the output state of
the proximal ODE X(t) with a time delay t, if (Cy, Ao, Eo) satisfies

sl —Ay Ep
det([coe_mo OD 40
for all s € C, R(s)=0

The control objective of this paper: exponentially stabilize the
overall sandwiched system, i.e., the ODE states Y(t), X(t) and
the PDE states u(x, t), v(x, t), by constructing an output-feedback
control input U(t) applied at the proximal ODE X(t), using the
delayed measurement you(t).
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— z(x,t) —— w(x,b) X(1) Y(1)
Transport PDEs z,w

Fig. 1. Block diagram of the plant (1)-(7).

2.2. Rewrite delay as transport PDE

By defining

v(x, t) = GY(t —t(x—1)), Y(x,t)€[1,2] x [z, 00) (14)
we obtain a transport PDE

v(1,t) = GY(t), (15)
ve(x, t) = —%vx(x, t), (16)
Your(t) = v(2, 1) (17)

V(x,t) € [1,2] x [r,00), to describe the time delay in the
measurement (7). Replacing (7) by (15)-(17), we obtain a sand-
wiched hyperbolic PDE-ODE system connecting with another
transport PDE, i.e., the following ODE-coupled hyperbolic PDEs-
ODE-transport PDE system:

X(t) = ApX(t) + Eqw(0, t) + BoU(t), (18)
z(0, t) = pw(0, t) + CoX(t), (19)
Ze(x, t) = —q1zy(x, t) — crw(x, t) — c1z(x, t), x € [0, 1] (20)

we(x, t) = qawy(x, t) — cQw(x, t) — cz(x, t), x € [0, 1] (21)
w(l,t) =qz(1,t)+ C{Y(t), (22)

Y(t) = AY(t) + Biz(1, ), (23)
v(1,t) = C1Y(¢), (24)
ve(x, t) = —%vx(x, t), x e [1,2] (25)
Your(t) = v(2, t), (26)

for t > 1. Note that the time delay is “removed” at a cost of
adding a transport PDE into the plant (1)-(7). Now, the con-
trol task is equivalent to exponentially stabilizing overall system
(18)-(26), i.e., ODE(X)-PDE(z, w)-ODE(Y )-PDE(v), by constructing
an output-feedback control input U(t) at the first ODE (18), using
the right boundary state of the last PDE (26).

3. Observer design

In order to build the observer-based output-feedback con-
troller of the plant (1)-(7), in this section, we design a state-
observer to track the overall system (1)-(7) only using the
delayed measurement yo.(t). Through the reformulation in
Section 2.2, the estimation task is equivalent to designing a state-
observer to recover the overall system (18)-(26) only using mea-
surements at the right boundary x = 2 of the last transport PDE v.

The observer is built as a copy of the plant (18)-(26) plus some
dynamics output injections:

Pé(t) = AoX(t) + Eo(0, t) + BoU(t) + h1(you(t) — (2, 1)), (27)

2(0, t) = pw(0, t) + CoX(t), (28)
Ze(x, t) = —q1Z(x, t) — r(x, t) — c12(x, t)
+ ha(Your(t) — D(2, £); %), (29)

We(x, t) = qax(X, t) — (X, t) — 22(x, t)

+ h3ourlt) — D2, £); %), (30)
W(1, ) = g2(1, £) + CY(t) + ha(You(t) — D(2, 1)), (31)
Y(£) = AV () + Bi2(1, £) + Ti(Yoult) — 0(2, 1)), (32)
B(1,t) = C,Y(t), (33)
B8, £) = — 008 )+ hsQou(£) = 32, 1)) (34)

where a constant matrix I; and dynamics hq, hy, hs, hy, hs are
to be determined. Initial conditions are taken as (Z(x, 0), Ww(x, 0),
d(x,0)) e 12(0,1) x [2(0, 1) x L?(1, 2). Defining observer error
states as

(Z(x. 1), W(x, 1), X(£), Y(t), B(x, 1))
=(z(x, t), w(x, t), X(¢), Y(t), v(x, 1))

— (&, 1), d(x, ), X(t), Y(£), B(x, 1)), (35)
according to (18)-(26) and (27)-(34), the observer error system

is obtained as

X(t) = AoX(t) + Eoib(0, £) — hy(§(2, 1)), (36)
70, t) = pw(0, t) 4+ CoX(t), (37)
Ze(X, t) = —q1Zx(x, t) — crw(x, t) — c1Z(x, t)

— hy(0(2, t); %), (38)
We(X, t) = @x(X, t) — cuW(X, t) — c2Z(x, t)

— h3(9(2, t); %), (39)
w(1,t) = qz(1, t) + C1Y(t) — ha(D(2, 1)), (40)
V(6) = AV (t) + B12(1, £) — [1(2, 1), (41)
3(1,t) = CyY (1), (42)
Ue(x, t) = —%ﬁx(x, t) — hs(¥(2, t); x), (43)
where TI70(2,t) is an output injection, and hq(v(2,t)),

hy(0(2, t); x), h3(0(2, t); x), ha(v(2, t)), hs(0(2, t); x) are dynamics
output injections which are determined by
hi(0(2, t)) = 2~ '[Hi(s)0(2, 5], (44)
ha(0(2, t); x) = 27 ' [Ha(s; X)0(2, 5)], (45)
h3(0(2, t); x) = 27 '[Hs(s; x)(2, 5)], (46)
ha(0(2, £)) = 2 '[Ha(s)0(2, 5)], (47)
hs(0(2, t); x) = 27 '[Hs(s; X)0(2, 5)], (48)

where .#~! denotes inverse Laplace transform and transfer func-
tions Hq(s), Ha(s; x), H3(s; x), Ha(s), Hs(s; x) are to be determined
later. Note that x in H,, H3, Hs is only a parameter. Introduc-
ing (44)-(48) is helpful in constructing the dynamics h;(-) in
(27)-(34), because the algebraic relationships between v(2, s) and
other states can be obtained by using Laplace transform, and
the transfer functions in (44)-(48) can be solved in algebraic
equations after rewriting the required conditions of achieving
an exponentially stable observer error system in the frequency
domain.

Determination of Hi(s), Hy(s; x), Hs(s; x), Ha(s), Hs(s; x) and
I'' in the observer (27)-(34), will be completed through the
following three transformations which convert the observer er-
ror system (36)-(43) to a target observer error system whose
exponential stability is straightforward to obtain.

3.1. First transformation

Applying the transformation:
B(x, t) = fi(x, t) + e(x)Y(t), (49)
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where ¢(x) is to be determined, we intend to convert (41)-(43)
to a “stable-like” form as

Y(t) = A1Y(t) + B12(1,t) — I7(2, t), (50)
(1,¢) =0, (51)
(% 0 = —ix 0, x€11,2) (52)

where A; is a Hurwitz matrix defined in (9). In what follows, ¢(x),
I'y, Hs(s; x) are determined in matching (41)-(43) and (50)-(52)
via (49). Inserting the transformation (49) into (41), we have

Y(t) = (A — Np(2)Y(t) + BiZ(1, t) — (2, t). (53)
Considering (50), (9), I'1 should satisfy
Me(2) = e™MLCre™ ™, (54)

Evaluating (49) at x = 1 and applying (42), (51), we have

(1, ) = 7(1, £) + (1Y (£) = p(1)Y(£) = CY(t). (55)
Therefore,
p(1) =G, (56)

Taking the time and spatial derivatives of (49) and submitting the
result into (43), we have

B, 0+~ (x4 (B2, )
= 7%, t) + @(X)ATY (t) + (X)B1Z(1, t) — p(X)[1D(2, t)
1060+ @ OT) + he(2, 1))
= @(x)B1Z(1, t) — (x)I'1D(2, t) + hs(V(2, t); X)
.

[w(x)m + %«/(x)} Y(t) =0, (57)

where (41), (52) are used, and ¢(x) should satisfy

@'(x) = —tA19(x), (58)

to make [p(x)A; + %(p’(x)]f’(t) zero, and Hs(s; x) which determines
hs(v(2, t); x) via (48) should be defined to ensure the rest term in
(57) is zero, i.e.,

@(x)B1z(1, t) — @(x)[1V(2, t) + hs(D(2, t); x) = 0. (59)

Before determining Hs(s; x), we solve conditions (54), (56), (58)
to obtain ¢(x), I as

p(x) = Cem™ D x e [1,2] (60)
Iy =e™L. (61)

Considering (51)-(52), we know

n(2,t)=0, t>r. (62)

Thus (50) can be written as

Y(t) = AV(t) + BiZ(1, 1), (63)

for t > 7. Taking Laplace transform of (63), we have

(sl — A)Y(s) = B12(1, s), (64)

where I is an identity matrix with appropriate dimension. Note:
for brevity, we consider all zero initial conditions while taking
Laplace transform (arbitrary initial conditions could be incorpo-
rated into the stability statement through an expanded analysis
which is routine). Recalling A; being Hurwitz, det(sI — A;) does
not have any zeros in the closed right-half plane. Then the matrix

sI—A; is invertible for any s € C, %i(s) > 0. Multiplying both sides
of (64) by (sI — A;)~!, we have

Y(s) = (sI — A1) 'B1Z(1, s). (65)
According to (49) and (62), we have
B(2,t) = @(2)Y(t), t>T. (66)

Writing (66) in the frequency domain, inserting (60), (65) we
have

3(2, 5) = e(2)Y(s) = r(s)Z(1, s), (67)
where
r(s) = Cie~™1(sl — A;)7'B;. (68)

Notice r(s) € R due to C; € R*™ and B; € R™,

Lemma 1. r(s) = Cie~™ (sl — A;)"'B; € R is nonzero for any
s € C, N(s)>0 under Assumptions 2 and 4.

Proof. Using (9) in Assumption 2, we have

I eML|[sl—Ar Bi|[1 —(s1—A) "B
0 I Cie™™ 0|0 I
_[s1-4 0o

T Clem™  —Ciem™ (s —A) By |

Recalling Assumption 4, we know

sl — A 0
det<|:C1€_TA1 —Cle_”‘l(sl —A])_131]> ;é 0

for any s € C, %(s) > 0. Thereby Cre~"1(s] — A1)”B1 # 0. The
proof of this lemma is completed. ®

(69)

According to Lemma 1, we know the existence of r(s)~! = %

Let us go back to (59) to determine Hs(s; x) now. Taking Laplace
transform of (59) and recalling (48), inserting (60) and (67), we
have

P(x)B12(1, 5) — (x)I70(2, 5) + Hs(s; x)v(2, 5)

— |:C] e—rAl(x—l)B1

— (CreT™TNry — Hy(s; x)) r(s)i|2(1, s)=0. (70)

Hs(s; x) is chosen as

Hs(s; x) = Cie~ ™Dy — crem ™= 1B r(5)~1
Cle—zAl(x—l)B1

Cie=*1(sl —A1)~'B;’

where Lemma 1 is used. Thereby, (70) holds. Then (59) holds
by rewriting (70) in the time domain. Together with (58), then
(57) holds for t > 7. hs(v(2,t); x) can then be defined via
(71) and (48). In the above, we have completed the conversion
between (41)-(43) and (50)-(52) through (49) and determined
I'1, hs(9(2, t); x) needed in the observer. In what follows, Hy(s) is
determined to make the boundary condition (40) as zero, i.e.,

— Cle—rAl(x—l)I—vl _

(71)

(1, t) = g2(1, t) + G Y(t) — ha(3(2, £)) = 0. (72)

Taking Laplace transform of (72) and recalling (47), inserting (65)
and (67), we have

w(1,s) = qZ(1,s) + C1Y(s) — Ha(s)B(2, s)

= (q+ Ci(sI — A1) "By — Ha(s)r(s)) 2(1,s) = 0. (73)
Hy(s) is chosen as

Hy(s) =[q + Ci(sI — A1) 'Bqlr(s)™"
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_q+Ci(sl —Ay)'By
C1€7IA1 (SI — A] )7131

to make (73) hold. It follows that w(1, t) = 0 in (72) by rewrit-
ing w(1,s) = 0 in the time domain. hs(?(2, t)) is thus deter-
mined by (47), (74). Therefore, through the first transformation
(49) with determining the dynamics output injections hy(v(2, t)),

(74)

hs(v(2, t); x), (36)-(43) can be converted to the first intermediate
system as
)L((t) = AoX(t) + Eo@(0, t) — h1((2, t)), (75)
70, t) = pw(0, t) + CoX(t), (76)
Ze(x, t) = —q1Zx(x, t) — ciw(x, t) — c1Z(x, t)
— ha(9(2, t); %), (77)
we(X, t) = Qy(x, t) — (X, t) — cZ(x, t)
—hs3(0(2, t); x), (78)
w(1,t) =0, (79)
Y(t) = A V(6) + B:2(1, 0), (80)
n(1,t)=0, (81)
1
ﬁt(x’ t) = _;ﬁx(xv t)’ (82)

for t > 7, where (79)-(82) are in a “stable-like” form while
couplings, i.e., sources terms, exist in the domain x € [0, 1],
i.e., (77)-(78). In the next subsection, we introduce the second
transformation to decouple the couplings in (77)-(78).

3.2. Second transformation

We now apply the second transformation (Bin & Di Meglio,
2016)

1
ﬁ)(x,t)ZB(X,t)—/ Y(x,y)a(y, t)dy, (83)

1
20 =0 0) - [ olx . Oy, (34)
X
with the kernels ¥(x, y), ¢(x, y) satisfying (86)-(89) in Wang and
Krstic (2019b) (K;(y) in (87) of Wang & Krstic, 2019b and appear-
ing in the following intermediate system will be defined in the
next subsection where the well-posedness of ¥(x, y), ¢(x, y) will

be shown together with K;(y)), to convert the first intermediate
system (75)-(80) to the second intermediate system as

. 3 ~ 1
X(6) =AoX(6) + Eo(0. 1) — Eo f (0, )iy, t)dy
0
+ (52, 1) (85)

1
&0, £) =pB(0, t) + CoX(t) — / Cokr ()i ly. t)dy. (86)
0

1
Gk, ) = — Qréig(x, £) + f W(x, y)B(. t)dy

— c@(x, t) — 1 B(x, t), (87)

1
BI(X’ t) =q2:BX(X7 t) + f N(Xv y)B(yv t)dy - Czﬁ(xs t)v (88)
B(1, t) =0, (89)
Y(t) =A,7(t) + Bya(1, t), (90)

for t > 7, with defining

. y .
M(x, y) =/ B(x, 8)M(8, y)ds — c19(x, y), (91)

_ y _
N(x,y) = / W(x, SIS, y)S — cryp(x, ). (92)

Note that 7(-, t) (81)-(82) is removed for brevity because 7(-, t) =
0, t > 7. In what follows, H,(s; x), Hs(s; x) are determined in
matching the first intermediate system (75)-(80) and the second
intermediate system (85)-(90) via (83)-(84). Inserting (83)-(84)
into (78) along (87)-(88), and applying (86)-(88) in Wang and
Krstic (2019b), (92), we have

we(X, t) = Gawx(X, t) + C2Z(x, t) + Ca(x, ) + h3(9(2, t); X)

= qir(x, Da(1, t) + h3(v(2, t); %) = 0, (93)
of which the detailed calculation is shown in (B.1) in Wang and

Krstic (2019b). We thus know the following equation should be
satisfied

Qi (x, 1)z(1, t) + h3(9(2, £); x) = 0, (94)
where @(1, t) = Z(1, t) according to (84) is used. Writing (94) in
the frequency domain and applying (46), (67), we have
g1y (x, 1)z(1, s) + Hs(s; X)(2, 5)
= (q1¥(x, 1)+ H3(s; X)r(s)) Z(1,s) = 0. (95)
Hs(s; x) should be chosen as
—G1y(x, 1)

Cq e~ (SI — A1 )7131

to make (95) hold. It follows that (93) holds by rewriting (95)
in the time domain. h3(v(2, t); x) can then be obtained by (46),
(96). Inserting (83)-(84) into (77) along (87)-(88), applying (89)
in Wang and Krstic (2019b), (91), we have

Hi(s; x) = —qiyr(x, Dr(s)™' = (96)

Ze(X, t) + q1Zx(x, t) + cr(x, t) + c1Z(x, t) + ha(D(2, t); x)
= q1o(x, Na(1,t) + hy(v(2,t);X) =0 (97)

of which the detailed calculation is shown in (B.2) in Wang and
Krstic (2019b). Therefore, hy(v(2, t); x) should satisfy

q1e(x, 1z(1, 1) + ha((2, £);x) = 0 (98)

where &(1,t) = Z(1, t) from (84) is used. Taking Laplace trans-
form of (98) and recalling (45), (67), we have

q1¢(x, 1)z(1, 5) + Ha(s; X)0(2, 5)
= (q19(x, 1) + Ha(s; X)r(s)) (1, s) = 0. (99)

H,(s; x) is obtained as

Hy(s; X) = —q1¢p(x, r(s)™" = UILAGR

- _ (100)
C] e~ (SI — Al )_IB]

to ensure (97) holds. hy(v(2, t); x) can thus be defined by (100),
(45). Boundary conditions (76), (79) follow directly from inserting
x = 0,x = 1 into (83)-(84) and applying (87) in Wang and
Krstic (2019b), (86), (89). ODEs (75), (80) are obtained directly
from (85), (90) via (83), (84) respectively. The second conversion
is thus completed and two PDEs (77)-(78) are decoupled now,
which can be seen in (87)-(88).

3.3. Third transformation

In order to decouple the ODE (85) with the PDEs and rebuild
the ODE in a stable form, we intend to convert the second inter-
mediate system (85)-(90) to the following target observer error
system

2(6) = AoZ(0),
&(0, t) = CoZ(t),
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(103)
(104)

Ge(x, 1) = —Qrdx(x, ) — C1a(x, ),
Y(t) = A 7(6) + Bia(1, £),

fort >ty=1+ é where A is a Hurwitz matrix defined in (8).

Please note that ﬁ(x, t)y=0aftertg =1t + é recalling (88)-(89),

and then B(x, t) can be removed for brevity. (85)-(90) can thus
be rewritten as

. 1
X(t) = AoX(t) — Eo / ¥(0, y)aly, t)dy + hi(3(2, 1)), (105)
0
1
@0, t) = GoX(t) — / CoKi(y)a(y, t)dy, (106)
0
ar(x,t) = —qrax(x, t) — cra(x, t), (107)
¥(t) = A,V(6) + Bya(1, o), (108)

for t > to. Note that (107)-(108) are the same as (103)-(104).
We thus only need to convert (105)-(106) to (101)-(102). The
following transformation

1
20 =) - [ K. Ody (109)
0

is applied to complete the conversion, where K;(y) satisfies (115)-
(116) in Wang and Krstic (2019b). Note that the conditions of
v(x,y), p(x,y), Ki(y), i.e, (86)-(89), (115)-(116) in Wang and
Krstic (2019b) is a 2 x 2 hyperbolic PDE-ODE system, which
is a scalar case of the well-posed kernel equations (17)-(23)
in Di Meglio, Bribiesca, Hu, and Krstic (2018) (setting dimen-
sions in Di Meglio et al. (2018) as 1). Therefore, the kernels
v(x,y), p(x,y) in (83)-(84) and K;(y) in (109) are well-defined.
In what follows, Hy(s) is determined in matching (105)-(106)
and (101)-(102) via (109). Submitting (109) into (101), applying
(105)-(107), (115)-(116) in Wang and Krstic (2019b), we have

Z(t) — AgZ(t)
=hi(0(2, £)) + q1K:(1)@(1, £) = 0,

of which the detailed calculation is shown in (117) in Wang and
Krstic (2019b). Thus Hi(s) which determines hq(v(2, t)) can be
solved from

hi(v(2,t)) + 1 K1(1)Z(1,£) =0

where &(1, t) = Z(1, t) according to (84) is used. Writing (111) in
the frequency domain and applying (44), (67) yield

Hi(s)0(2, 5) + q1K1(1)z(1, s)

t = to, (110)

(111)

= (Hi(s)r(s) + q1K:(1) Z(1,5) = 0. (112)
H1(s) is solved as
Hi(s) = ik (1r(s) ! = —— ikt (113)

N C197TA1 (SI — A])ilB] '

It follows that (110) holds by rewriting (112) in the time domain.
h1(v(2, t)) can then be defined via (44), (113). Inserting (109) into
(106), it is straightforward to obtain (102). Therefore, (101)-(102)
is converted from (105)-(106) through (109) for t > to. The third
transformation is completed and the ODE (101) is independent
and exponentially stable now.

After the above three transformations, we have converted the
original observer error system (36)-(43) to the target observer
error_system (101)-(104) (for t € [tp, 00), N(x, t) = 0 (81)-(82)
and B(x, t) = 0 (88)-(89) are removed for brevity). Because the
original observer error system (36)-(43) is bounded in the finite
time t € [0, ty), we prove the exponential stability of (36)-(43)
for t € [tg, 00) in the next subsection.

Note that dynamics H; determined above are some dynamic
extensions, of which the states are dynamic output injections in
the observer (27)-(34), denoted as follows

yi(t) = i (0(2, 1)), ya(x, t) = ha(V(2, t); X), (114)
y3(x, t) = h3(v(2, t); X), (115)
ya(t) = ha(v(2, 1)), ys(x, t) = hs(V(2, t); X), (116)

which are proved as exponentially convergent to zero as well in
the next subsection.

Remark 2. H;(s)v(2,s) usually generates time-derivatives of
v(2, t) in the time domain, which often appears in using the
frequency-domain design approach. In practice, one way to avoid
taking the time derivatives which may lead to measurement
noise amplification is measuring n-order time-derivative states
0/'v(2, t) and calculating (2, t) by n times integrations of 9{'v(2, t),
which is actually equal to multiplying H;(s) by Sin to make H;(s)
proper. As shown in an application case of control of DCV in
Section 6, payload oscillation acceleration is measured and the
velocity is calculated by integrating with the known initial con-
ditions. Measuring acceleration is a prevalent method in many
mechanical systems, because the acceleration sensor is cheaper
and far easier to manufacture and install (Basturk & Krstic, 2014).

3.4. Stability analysis of the observer errors

Notation: Supposing u(x, t) is on a spatial domain x € [d4, d3],
flu(-, O = 4/ d‘? u(x, t)2dx denotes the L? norm and |u(-, t)|le =

SUPyxe(d, .41 {[U(x, £)]} denotes the oo-norm. |-| denotes the Eu-
clidean norm.

Theorem 1. For any initial data (Z(x, 0), w(x, 0), ¥(x, 0), X(0), Y(0)) €
12(0, 1) x L?(0, 1)x L2(1, 2) x R" x R™, internal exponential stability
of the observer error system (36)-(43) holds in the sense of the norm

26 Olloo + 10 Ol + 5, Ollos + [XO] + [ 7(0)] + (e

+ a0l + [1y2(-, Olloo + Y30, Olloo + 1¥5(-, Olloo (117)
with the decay rate being adjustable by Lo, L;.

Proof. The stability of the original observer error system can be
obtained by analyzing the stability of the target observer error
system (101)-(104) and using the invertibility of the transforma-
tions. (101)-(104) is a cascade of Z(t) into a(-, t) into Y(t). From
(101), Z(t) is exponentially convergent to zero because Ag is Hur-
witz. With the method of characteristics as Deutscher et al. (2018)
it is easy to show that a(x, t) in the PDE subsystem (101)-(102)
are exponentially convergent to zero. Because A; is Hurwitz, we
have Y(t) is exponentially convergent to zero. The decay rate A, of
(101)-(104) depends on the decay rate of the ODEs Z(t), Y(t). In
other words, the decay rate A, is adjustable by Lo, L; according to
(8)-(9). Recalling 7(x, t) = 0 and B(x, t) = 0 after tp = é + 1, we
obtain £2(t) = [la(-, O)lleo+ 1B+, Ollec +17(-, Ol +1Z(E)+[Y (L)
is bounded by an exponential decay with the decay rate A, fort >
to. Note that the transient in the finite time [0, to) can be bounded
by an arbitrarily fast decay rate considering a trade off between
the decay rate and the overshoot coefficient, i.e., the higher the
decay rate, the higher the overshoot coefficient. Therefore, we
conclude the exponential stability in the sense of £2(t) being
bounded by an exponential decay rate A, with some overshoot
coefficients for t > 0. Applying the transformation (49), (109) and

(83)-(84), we respectively have [|0(-, t)lloc < Yia (I7(, t)lloot+

7)), [%0)| = 7 (16 Ol + [20)]). 12, OllaH 1 Ol
< T (I, Olloo + I1BC. t)llo), for some positive Yiq, Yip, Tie.
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According to (44)-(48), (113), (100), (96), (74), (71), we know
the output injection states y(t), y2(x, t), y3(x, t), y4(t), ys(x, t) are
the output states of the following extended dynamics:

—q:1K:,(1
Hi(s) = el (118)
C]e_rAl(SI —Aq )_131
— x, 1
Ha(s; X) = @l (119)
C]E'_TAl(SI —A1)_131
—q1y(x, 1
Hys = — VD (120)
C]E_tAl(SI —A1)_1Bl
Ci(sI —A;)"'B
Hy(s) = q+ Ci( _1) 1! (121)
Cle—f"“(sl —A])_lBl
C e—rAl(x—l)B
Hs(s; x) = Cre~ ™MDy — ! ! (122)

Cle—““l (SI — A] )_]B] ’

of which the input signal is v(2, t) which is exponentially con-
vergent to zero. Recalling Lemma 1, we know there is not pole in
the closed right-half plane in the transfer function (118)-(122),
the exponential convergence of [y;(t)|, [[y2(X, t)llco, I1¥3(X; £)l 0o,
[ya(t)l, lys(x, t)]ls are thus obtained. Note that x € [0, 1] is just
a parameter in the transfer functions (119), (120), (122) and the
stability result would not be affected. ®

4. Output-feedback control design

In the last section, we have built the observer which can
compensate the time-delay in the output measurement yo(t) of
the distal ODE, which is the only one measurement used in the
observer, to track the states of the overall sandwiched PDE system
(1)=(7). In this section, we design an output-feedback control
law U(t) based on the observer (27)-(34) by using backstepping
transformations and frequency-domain designs.

First, two transformations are introduced to transform the
observer (27)-(34) to a target system (139)-(146), which is in
a stable-like form except for the proximal ODE which is in-
fluenced by perturbations originating from the PDEs and distal
ODE. Representing this “target system” in the frequency domain
by using Laplace transform, the algebraic relationships (160)-
(166) between the states of the proximal ODE and the states of
the PDEs and distal ODE are obtained. Inserting these algebraic
relationships to rewrite the perturbations in the proximal ODE,
a new ODE (171) without external perturbations can be built in
the frequency domain, where the control input to exponentially
stabilize this ODE can be designed.

4.1. First transformation

The aim of the first transformation is to remove the source
terms in the PDE domain x € [0, 1], i.e., couplings in (29)-(30),
and to build the state matrix of the distal ODE (32) as a Hur-
witz matrix. A PDE backstepping transformation in the following
form (Di Meglio et al., 2018)

1
olx, ) =3(x, £) — f Ks(x, Y20y, )y

1
- / J5(x )b, t)dy — y ()7 (0) (123)
1
B(x. t) =i(x, ) — / Ka(x, Y209, £)dy
1
- f Jo(x, Y. Ody — AF(E) (124)

is introduced, where the kernels K5(x, y), J3(x,y), y(x), Kz2(x,y),
J(x,¥), A(x) are to be determined later, to convert (27)-(34) to
the following intermediate system:
. 1
X(t) =AoX(t) + EoB(O0, t) + / Ka(x)au(x, t)dx
0

1
+ f Ks(x)B(x, t)dx + Ks Y (t)
0

+ BoU(t) + h1(9(2, t)), (125)
1
a(0, t) =pB(0, t) + CoX(t) + / Ki(x)a(x, t)dx
0
1
+ KsY(t) + / K>(x)B(x, t)dx, (126)
0
af(xv t) = - QI‘YX(X» t) - C]Ol(x, t) - )’(X)Fl 5(27 t)
1
- f]z(x,y)hg(fz(Z,t);y)dy
1
- / K(x, y)ha(5(2. £); y)dy
+ ho(0(2, t); X) — q2f3(x, 1)ha(V(2, 1)), (127)
Be(x, t) =q2Bx(x, t) — C28(x, t)
1
AN ) — / Lo, Y)hs(B(2. 0: )y
1
- / Ky (x, y)ha(0(2, t); y)dy
+ h3(0(2, t); X) — qaf2(x, 1)ha(0(2, 1)), (128)
B(1, t) =qa(1, t) + ha(v(2, 1)), (129)
V(t) =A,9(6) + Bra(1, £) + [13(2, 1), (130)
(1, 1) =G Y (1), (131)
B, 1) = = 06 0+ (32, 1 ), (132)

where A; is a Hurwitz matrix by choosing the control parameter
F; according to Assumption 2. Ky(x), Ka(x), K3, Ka(x), K5(x), Ks
should satisfy (140)-(145) in Wang and Krstic (2019b), which are
obtained by matching (125)-(126) and (27)-(28) via (123)-(124)
(please see Step 4 in the Appendix-A of Wang and Krstic (2019b)
for the details). By matching (127)-(130) and (29)-(32) (the de-
tailed process is shown in Steps. 1-3 in the Appendix-A of Wang
and Krstic (2019b)), the conditions on the kernels K3(x, y), J3(x, y),
y(x), Ka2(x, ), ]2(x, ¥), A(x) in the transformations (123)-(124) are
obtained as (146)-(157) in Wang and Krstic (2019b), of which the
well-posedness is given in Lemma 2 in Wang and Krstic (2019b).
Similarly, the inverse transformation can be obtained as

1
3(x, 1) =alx, t) - / A )y, t)dy

1
- / N (%, y)BW, t)dy — (x)Y(t), (133)
1
(x, ) =B(x. ) — / Px, y)aly, t)dy
1
- / T, Y)Y, Dy — 2(T(0), (134)

where #(x,y), /(x,y),9(x), 2(x,y), 7(x,y), 2(x) are kernels
which can be determined through a similar process in the
Appendix-A of Wang and Krstic (2019b). The first transformation
in the control design is completed.
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4.2. Second transformation
In order to remove the last three terms in the boundary

condition (126) and form a Hurwitz matrix of the proximal ODE
(125), we introduce the second transformation

1
2(t) :X(t)+co+/ Ki(x)au(x, t)dx
0

1

+ Gt / Ko (x)B(x, t)dx + CoTKsY (1), (135)
0

where C;™ denotes the Moore-Penrose right inverse of C. Note

that because Cy is full-row rank (with rank equal to 1), a right
inverse exists for Cp. i.e., CoCo™ = I. A choice of Co™ is Gyt =
Cg(CoCy)~". Using (135), then (125)-(126) is converted to

2(t) = Ao2(t) + 1 Go™ Kn(0)Co2(t) + BolU(t)

+ MyY / M, (x)a(x, t)dx—i—/ Mg(x)B(x, t)dx

+ Nya(1, t) + NaB(0, t) + #[hy(8(2, 1)), ha(D(2, t); X),

hs(0(2, t); x), ha(0(2, t)), hs(0(2, t); x), (2, £)], (136)
a(0, t) = pp(0, t) + CoZ(t), (137)
where

U(t) = U(t) — FoZ(t), (138)

and ;\0 is Hurwitz by choosing the control parameter Fy consid-
ering Assumption 2. In (136), the expression of s#[h(v(2, t)),
hy(B(2, t); %), hs(V(2, t); x), ha(0(2, 1)), hs(V(2, t); X), 0(2, t)] is
shown in (163) of Wang and Krstic (2019b), and Ny, N, My (x),
Mg(x), My are shown in (165)-(169) of Wang and Krstic (2019b).
We thus arrive at the target system consisting of (127)-(132),
(136)-(137) includes the dynamic output injections in s#. Con-
sidering Theorem 1 and (114)-(116), we know dynamic out-
put injections hi(v(2, t)), ha(v(2, t); x), hs(v(2, t); x), ha(v(2, t)),
hs(v(2, t); x) and I19(2, t) can be regarded as zero, i.e., # = 0,
for brevity. Therefore, the target system (127)-(132), (136)—(137)
can be rewritten as

2(t) = A2(t) + 41 Co R (0)Go2 (1)

+MyY /M X)X, t)dx—i—f Mg(x)B(x, t)dx
)

+ Nya(1,t) 4+ N2 B(0, t) + BoU(t (139)
(0, t) = pB(0, t) + CoZ(t), (140)
ai(X, t) = —qrax(x, t) — cia(x, t), x €[0,1] (141)
Bi(x, t) = q2Bu(x, t) — 2 B(x, t), x €[0,1] (142)
B(1,t) = qu(1, t), (143)
Y(t) = AV (6) + Bra(1, 1), (144)
B(1,t) = CY(¢), (145)
De(x, t) = —%f}x(x, t), xe[1,2]. (146)

4.3. Control design in frequency domain

In the last two subsections, the system (27)-(34) is converted
to the target system (139)-(146), through the two transforma-
tions (123)-(124) and (135). In this section, the control U(t) in
(139) of the target system (139)-(146) will be designed in the
frequency domain by using Laplace transform.

Taking Laplace transform of (139)-(146), we have

(s — Ao)Z(s) = q1Co T K1(0)CoZ(s) + My Y (s)

1 1
+ / Ma(x)a(x,s)dx—i-/ Mg(x)B(x, s)dx
0 0

+ Nie(1,s) + N2 B(0, s) + BoU(s), (147)
@(0,5) = pp(0,s) + CoZ(s), (148)
sol(x, 5) = —qrax(x, ) — cra(x, s), (149)
SBX. $) = q2Bu(x, ) — C2B(x, 5), (150)
B(1,s) = qa(1,s), (151)
(sl — A)Y(s) = Bi(1, 5), (152)
(1,5) = C1Y(s), (153)
sv(x, s) = —%f)x(x, s). (154)

Note: for brevity, we consider all zero initial conditions while
taking Laplace transform (arbitrary initial conditions could be
incorporated into the stability statement through an expanded
analysis which is routine).
Defining
(24fy (1,1

h(s) = 1 — pqe (Gt )e (Gta )s, (155)
according to (148)-(154) and Section 3.2 in Di Meglio et al.
(2020), we obtain the following algebraic relationships between
CoZ(s) and other states in (148)-(154):

—C1=s

h(s)a(x,s) =e 91 “CoZ(s), (156)
hs)Bles)=qe & (70 “HS)C o705, (157)
h(s)i(x, s) = Cy(s — Ay)'Bye @ T (s, (158)
hs)(1.5) = Ci(sT — A Bre B Col(s). (159)
h(s)x(0, s) = CoZ(s), (160)
—(c1+s)
h(s)B(1,5) =qe a1 GoZ(s), (161)
MSBO. ) =ge &~ Co(s). (162)
hshe(1,s) = e & Cod(s). (163)
hS)(s) = (s — Ay Bre o CoZ(s). (164)
1
hs) f Ms()B(y. $)dy
0
1 —(cp+s 1+s)
:f Myly)ge B 0 dycoZ(s) (165)
0
1
hs) / Moy, s)dy
f Mulyle & dyCod(s). (166)

Multiplying both sides of (147) by scalar h(s), and substituting
(160)-(166) therein yields
h(s)(sI — Ag)Z(s) = h(s)BoU(s) + h(s)a1Co* K1(0)CoZ (s)
—(c1+s)
CoZ(s)

+ My(sI —A;) 'Bie 91

—(c1+s)
/ Mo (y)e o YdyCoZ(s)

cz+s(
/Mﬂ y)ge @

—(c1+s) —(cp+s) _ (cq+s)

Z\eQT)
+ Nje q1 C()Z( )+N2q€ 92 an C()Z() (167)

Recalling Assumption 1, we know h(s) is nonzero for any s € C,
M(s) > 0 and then h(s) has an inverse h(s)~!. Multiplying both

+5)
ki dyCoZ(s)
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sides of (167) by h(s)~! and defining

E(t) = GoZ(t), (168)
(167) is then rewritten as
(sT — Ao)Z(s) = BoU(s) + q1Co "K1(0)E(s)
N —(c1+s) o
+ h(s) " My(sT —Ay)'Bie 01 E(s)
1 1 f(c1+5)y
e [ Mue e
0

; 1 )y (ats)

+-h6)’!/)A@xyme G W ayé(s)
0

1 —(c1+s) o 1 —(ea+s) _(e1+9) A
+ h(s)'Nie” 5 E(s)+h(s) 'Noge” 2 @ E(s)
for any s € C, R(s) > 0. Defining

_ ~ —(c1+s)
G(s) = q1Co T Ky1(0) + h(s)~! [MY(SI — A1) 'Bie o
—(c1+s) —(cp+s) (c1+s)
/ M, ( q11+ ydy + / Mﬂ ¥)qe q22 (1=y)— }JT dy

—(c1+s) c2+s) (c1+s)
+ Nie” @1 +Noge @ @ ] (169)
which is a stable, proper transfer matrix, we have
(sI — Ag)2(s) = G(s)E(s) + BoU(s). (170)

Recalling Ao being Hurwitz, det(sI —AO) does not have any zeros in
the closed right-half plane. Then the matrix (sI —Ap) is invertible
for any s € C, NR(s) > 0. Multiplying both sides of (170) Co(sI —
Ao) , we obtain

CoZ(s) = Co(sl — Ag) ™!
That is
E(s) = Co(sI — Ag)"'G(s)E(s) + WoU(s),

where Wy(s) = Co(sI — Ao)‘lBo. Recalling Assumption 3 which is
equivalent to the existence of a right inverse for Wy. A possible
choice is given by the Moore-Penrose right inverse WO+ (s) =
W{ (s)(Wo(s)W, (s))~" (Bou Saba et al., 2019).

G(S)E(s) 4 ColsT — Ag)~'BoU(s).

(171)

Choose U(s) in (171) as
U(s) = =W, (5)82(5)Co(sI — Ao) ™' G(s)E(s) = F(s)E(s) (172)
where a SISO low-pass filter £2(s) satisfying
1 - Q2(jw)| < ! Yo € R (173)

SUP,,eg 0 (G(jw))o (Coljwl — Ag)~1)
is adopted to make sure F(s) strictly proper. Note that because
G(s) is uniformly bounded in the closed right-half plane,
sup,,cz 0 (G(jw)) is bounded where ¢ stands for the largest singu-
lar value. A low-pass filter £2(s) always can be chosen to ensure

F(s) strictly proper and satisfy (173) concurrently, because there
exists a w; to make the right hand side of (173) larger than 1at
® > w1 (sup,,cg 6(G(jw)) is bounded and &(Co(jow — Ag)~") can be
small enough at sufficiently high frequencies), and thus (173) still
holds even if the gain |$2(jw)| of the low-pass filter is close to zero
for w > w;. It means that a choice of the cut-off frequency of the
low-pass filter £2(s) is w;. Note that U has been chosen as strictly
proper by introducing the low-pass filter §2(s), which means that
the controller is robust to small input delays (Bou Saba et al.,
2019).

Substituting (172) into (171), we have

E(s) = (1 — 2())ColsI — Ag) ' G(s)E(s) = D(S)E(s).

— z(xf) —— w(x.i) X(0) Y(6) w(x,t)
Tra{r}§g9§ PDEs z,w Sensor delay
: : Transport
Tt — - i i -
Uty — ODE-X m ODE-y — ' pTeP
l
Observer
(W0, X.7)
Fig. 2. Diagram of the closed-loop system.
That is
(1—@(s))é(s) =0, (174)
where
& (®(jo)) < |1 = 2(j)|5(Coliol —Ag)™") sup &(Gljo))
weR
<1 (175)

by recalling (173), which is a sufficient condition for exponential
convergence to zero of £. Considering (172), (138), U(s) can be
written as

U(s) = U(s) + FoZ(s)

= [Fo — W (5)2(5)Co(sI — Ag) ™' G(5)ColZ(5),

where inverse Laplace transform is required to represent U(s) in
the time domain considering implementation of the controller
and Z can be replaced as the observer states by (135), (123)-
(124).

(176)

5. Stability analysis of the closed-loop system

The closed-loop system includes the plant (1)-(7), the ob-
server (27)-(34) and the controller (176). The block diagram
of the closed-loop system is shown in Fig. 2. We have given
Theorem 1 showing the observer error states between the plant
and the observer are exponentially convergent to zero in the
sense of the norm (117) in Section 3.4. Considering (35), in order
to prove the exponential stability result of the closed-loop sys-
tem, we present the next lemma to show the exponential stability
of the system-(Z(x, t), w(x, t), v(x, t), X(t), Y(t)) (27)-(34) under
the controller (176).

Lemma 2. For any initial data (2(x, 0), Ww(x, 0), ¥(x, 0), )A((O), 9(0)) €
[%(0, 1) x L%(0, 1) x [%(1, 2) x R" x R™, exponential stability of the
system (27)-(34) under the controller (176) holds in the sense of the
norm 20 D)l + 10, Ol + 190 Oloe + [X(O] + [V(0)] with
the convergence rate being adjustable by Fy, F.

Proof. We prove the exponential convergence of the states in
the overall system based on the exponential convergence of &(t)
by applying their algebraic relationships obtained in Section 4.3.
According to exponential convergence to zero of £(t) = CoZ(t),
which is obtained from (174)-(175), recalling (156)-(158) and
(164)-(166), we have a(x,t), B(x, t), d(x, t), lla(-, O, IB( O,
|Y(t)| are exponentially convergent to zero, where the conver-
gence rate is adjustable by Fy, F; considering (10)-(11). Substi-
tuting (172) into (170),

Z(s)

= (sl — Ao)"'[G(s) — BoW, $2(s)Co(sI — Ao) 'G(s)IE(s).  (177)
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Because (s — Ag)~'[G(s) — BoW," £2(s)Co(sI — Ao)1G(s)] is a (sta-
ble) proper transfer matrix, using the exponential convergence
result of &£, we also obtain exponential convergence to zero of Z
via (177). Applying Cauchy-Schwarz inequality into the inverse
transformations (133)-(134), and transformations (135), we ob-
tain [2(x, )] + [d(x, )] < Taa(lax, O)] + [Bx. O)] + lla(-, O] +

1BC. O+ |V(0)) and [(0)] = TanCllee, O+ 1BC, Ol +|F(6)| +
‘2(0‘) for some positive 15,4, 75. Recalling the obtained expo-

nential convergence of a(x, t), B(x, t), lle(-, )ll, IB(, O, |§?(t)|,
|Z(t)], we thus obtain the exponential convergence to zero of
Z(x,t) + ﬁ)(Ax, t) + |X(t)|. Recalling the exponential convergence
to zero of |Y(t)| and v(x, t), we obtain Lemma 2. H

Theorem 2. For any initial data (z(x, 0), w(x, 0), v(x, 0), X(0), Y(0)) €
1%(0, 1) x L*(0, 1) x L%(1, 2) x R" x R™, considering the closed-loop
system including the plant (1)-(7), the observer (27)-(34) and the
controller (176),

(1) The internal exponential stability holds in the sense of the norm

20 Ol + 10 oo + 00, Ol + X(O)] + Y(0)
26 Ollos + (- )l + 13 Ol + (X0 + | 7100)

+ YO + 1ya(®l + 1y2(- Olleo + 11Y3( Ollee + 1¥5(-5 Elloo
with the convergence rate being adjustable by Ly, L1, Fo, F.

(2) There exist positive constants I, and A. making the dynamic
feedback control U(t) bounded and exponentially convergent to zero
in the sense of |U(t)| < I'-e™ <t

Proof. (1) Applying (35) and Cauchy-Schwarz inequality, recall-
ing Theorem 1 and Lemma 2, we straightforwardly obtain (1) in
Theorem 2.

(2) According to the control design in Section 4.3, we know
F(s) = WJ.Q(S)CO(SI — Ao)'G(s)Cy in (172) is strictly proper. It
follows that Fo — W, $2(s)Co(sI —Ag)~'G(s)Co in (176) is a (stable)
proper transfer function because Fy is a constant matrix. Recalling
(176) and the exponential convergence of Z proved in Lemma 2,
we obtain the exponential convergence to zero of the dynamic
feedback control U(t), which is a dynamic extension generated
by utilizing the frequency-domain design approach. The proof of
Theorem 2 is completed. ®

6. Application in control of a deepwater construction vessel

A DCV is used to place equipment to be installed at the
predetermined location on the seafloor for off-shore oil drilling,
which is shown in Fig. 3 and described in the first paragraph
in Section 1. The equipment, referred to as payload, have to be
installed accurately at the predetermined location with a tight
tolerance, such as the permissible maximum tolerance for a typ-
ical subsea installation in How et al. (2011) is 2.5 m. In this
section, we design an output-feedback control force at the crane
to reduce oscillations of the long cable and position the payload
in the target area, with compensating the time-delay in the
measurement which is the oscillation acceleration of the payload,
obtained by an acceleration sensor. The details of the applica-
tion of the above theoretical results are presented in Wang and
Krstic (2019b) due to the space limit. Note that we only consider
one-dimensional oscillations of DCV and the end phase of the
descending process, i.e., the cable length being constant. Control
problems of two-dimensional coupled oscillations of DCV in the
whole descending/ascending process with a time-varying-length
cable are considered in Wang and Krstic (2020) which, however,
is not a sandwiched system by neglecting the crane dynamics,
and does not include delay compensation.

Fig. 3. Schematic of a DCV used in seafloor installation..

6.1. Modeling

DCV dynamics is modeled as (212)-(216) in Wang and Krstic
(2019b), i.e., a wave PDE (u(x, t) describing distributed trans-
verse displacements along the cable) sandwiched by two ODEs
(bo(t), b(t) represent transverse displacements of the onboard
crane and the payload). The details of obtaining the DCV model-
(u(x, t), bo(t), br(t)) are shown in Sec. 6.1.1 in Wang and Krstic
(2019b) and the physical parameters from How et al. (2011) are
given in Table 2. Apply Riemann transformations:

To

z(x, t) = ug(x, t) — ‘/;ux(x, t), (178)
To

w(x, t) = u(x, t) +,/;ux(x, t) (179)

where Ty is static tension defined as Ty = Mg — Fpuoyanr With
Fpuoyant = %anhcpsg, and defining new variables X(t) = Bo(t),
Y(t) = by(t), (212)-(216) in Wang and Krstic (2019b) can be
rewritten as

X(t) = AopX(t) + Eow(O0, t) + BoU(t), (180)
z(0, t) = pw(O0, t) + CoX(t), (181)
ze(x, t) = —quzy(x, t) — c1(z(x, t) + w(x, £)) + f(x, t), (182)
we(X, t) = qawy(x, t) — ca(z(x, t) + w(x, t)) + f(x, t), (183)
w(L, t) = qz(L, t) + C1Y(t), (184)
Y(£) =AY (t) + Biz(1, t) + fy(t), (185)
Your(t) = C1Y(t — ), (186)

where yo(t) is the delayed measurement output and yo.(t) =
0,t € [0, t) because the sensing signal has not been received.
The observer and controller design in the next subsection is
based on (180)-(186) except for the ocean current disturbances
f(z,t), fi(¢), i.e., external drag forces at the cable and payload,
which are regarded as model uncertainties in the simulation
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Table 2

Physical parameters of the DCV.
Parameters (units) Values
Cable length L (m) 1000
Cable diameter Rp (m) 0.2
Cable effective Young’s Modulus E (N/m?) 4.0 x 10°
Cable linear density p (kg/m) 8.02
Crane mass My (kg) 1.0 x 108
Payload mass M; (kg) 40 x 10°
Gravitational acceleration g (m/s?) 9.8
Cable material damping coefficient d. (N s/m) 0.5
Height of payload modeled as a cylinder h. (m) 10
Diameter of payload modeled as a cylinder D, (m) 5
Damping coefficient at payload d; (N s/m) 20 x 10°
Damping coefficient at crane dy (N m s/rad) 8.0 x 10°
Seawater density ps (kg m~3) 1024

to test the robustness of the controller. The sensor delay 7 is

considered as 0.1 s. Note that g1 = q; = Tp—o 1 =C = 3—;.
Q.

D, q satisfy Assumption 1 (|pq| =1 < e = 1.0014), and
—d VT T 1

Ag= 2 MOP g V0P g =2, (187)
Mo Mo Mo Mo
—d VT VT

A= —+ 0,073]:_ 0,07C]:2 (188)
M M M

satisfy Assumptions 2-4. Ocean current disturbances f(x, t), fi(t)
are modeled in Sec. 6.1.3 in Wang and Krstic (2019b).

The initial conditions are defined as z(x,0) = 4sin(”T"),
w(x,0) = 4cos(%), thereby, X(0) = 2, Y(0) = —2 recalling
(181), (184) which physically mean initial oscillation velocities of
the crane and payload. The initial oscillation velocity of the cable
u(x, 0) can be known based on the initial conditions of (180)-
(186), i.e., z(x,0), w(x, 0), as u(x,0) = %(z(x, 0) + w(x, 0)) =
2sin( ) + 2 cos( 7). The initial distributed oscillation displace-
ment of the cable is defined as u(x, 0) = 0, thereby, initial offset
of the payload b;(0) = 0, and by(0) = 0 according to (213), (215)
in Wang and Krstic (2019b).

6.2. Simulation results

Our task is to reduce the oscillations of cable and place the
payload in the target area, namely within the permissible tol-
erance 2.5 m around the predetermined location (How et al,,
2011), by applying the observer-based output-feedback control
force at the onboard crane. We consider the end phase (20 s) of
the descending process, i.e., the payload near the seafloor and the
cable being the total length L, which is the most important and
challenging phase because the cable is long and the oscillations
would be large. The simulation is based on (180)-(186) using the
finite difference method with the time step and the space step
as 0.001 s and 0.1 m respectively. Considering the sensor delay
T = 0.1 s, the measurement output is the 100-time-steps-earlier
one. Applying the proposed deigns into building the observer and
controller for DCV (180)-(188), of which details are shown in Sec.
6.2 in Wang and Krstic (2019b), the following simulation results
are observed.

6.2.1. Responses of z, w,X,Y

According to Fig. 4, we know the oscillations appear in the
responses of w(x, t), z(x, t), which is the result of the property of
the long cable and the external disturbances (230)-(231) in Wang
and Krstic (2019b). From Fig. 5, we can observe that the designed
control input can effectively reduce the oscillation amplitudes
even though the plant is subject to the external disturbances.
The moving velocity of the controlled crane and the oscillation

R0 T [

20

10
X[m] 00 t[s]

(b) z(x,1).

Fig. 4. Responses of w(x, t), z(x, t) (without control).

x[m] &g 1[s]

(b) z(x,1).

Fig. 5. Responses of w(x, t), z(x, t) (with control).

X (t)[m/s]
Y (t)[m/s]

15 20 3 5 15 20

10
Timel[s]

(b) Y (1).

Fig. 6. Responses of X(t), Y(t) (with control).

10
Time[s]

(a) X(¢).

velocity of the payload, namely X(t) and Y(t), are shown in
Fig. 6 from which we know X(t) and Y(t) are convergent to zero.
It also can be seen in Fig. 7 that the observer errors w(x, t),
Z(x, t) converge to a small range around zero under the unknown
external disturbances and the sensor delay t.

6.2.2. Representing the obtained responses as u, by in DSV

The physical meaning of the responses z, w in Figs. 5-6 would
be clear after representing them as the responses of the ca-
ble oscillation and position error, i.e., u and b; in (212)-(216)
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1666
X[m] t[s]
(b) z(x,1).

Fig. 7. Observer errors w(x, t), Z(x, t).
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Fig. 9. Transverse displacement b;(t) of the payload. The end point at t =20 s
means the position error on the sea floor. The permissible tolerance of this
typical model is 2.5 m (How et al, 2011).

of Wang and Krstic (2019b). Through (178)-(179), the cable
transverse oscillation energy including oscillation kinetic energy
§||ut(-, t)||? and potential energy %" lux(-, £)||*> can be represented
by z(x, t), w(x, t) as §llu(-, O + Pl OI* = §llw(, ) +
2(, Ol + Sllw(-, £) — z(-, t)||I?, where [Juc(-, t)[|* denotes fOL Uup
(-, £)?dx. The transverse displacement of the payload b;(t) can be
obtained as by(t) = u(L, t) = %fot(z(L, 8)+ w(L, 8))ds + b.(0).

As shown in Fig. 8, the oscillation energy of the cable with
the proposed control law is reduced faster and to a level below
to the uncontrolled case after t = 5.5 s, under the external
disturbances (230)-(231) in Wang and Krstic (2019b). This result

x10

25 - . .
2
15
z
0 \/-A/—/\/'\-/—
—0.5
T 5 10 15 20

Time[s]

Fig. 10. Control force of the onboard crane.

shows robustness of the proposed control to small disturbances.
However, as we continue to increase the amplitude of the distur-
bance (230) in Wang and Krstic (2019b) by gradually raising Ap
i.e,, the amplitude of the oscillating drag force, from its baseline
value 400, the blue line in Fig. 8 shows that the controller fails
to achieve effective vibration suppression once Ap reaches three
times the baseline value, i.e.,, Ap = 1200. From Fig. 9, we note
that the position error of the payload is —0.77 m from the
desired location on the sea floor, which satisfies the requirement
of being within permissible tolerance of 2.5 m, while the position
error is —4.11 m in the case without control, which exceeds the
tolerance. The control force shown in Fig. 10, is bounded and
convergent.

7. Conclusion and future work

Delay-compensated control of heterodirectional coupled hy-
perbolic PDEs sandwiched between two general ODEs is ad-
dressed in this paper, where the control input is applied at one
ODE and the measurement is placed at another ODE with a sensor
delay. Using the delayed measurement output, a full-order state
observer which can compensate the sensor delay is designed
to estimate the states of the overall system including the plant
and sensor delay dynamics. An observer-based output-feedback
controller is designed using backstepping transformations and
frequency-domain design methods. The exponential stability re-
sult of the closed-loop system and the boundedness and ex-
ponential convergence of the control input are proved in this
paper. The obtained theoretical results are applied to oscillation
suppression of a DCV for off-shore oil drilling as a simulation case.
The simulation results show the proposed control input applied
at the onboard crane can reduce the oscillations of the cable and
place the payload in the target area on the sea floor.

In this paper, the observer-based output-feedback controller is
designed based on the model with completely known parameters.
In the future work, the model uncertainties, such as unknown
plant parameters and external disturbances will be considered
in such a sandwiched PDE system, and the adaptive and ADRC
(Active Disturbance Rejection Control) technologies would be
incorporated into the control design to solve this more practi-
cal and complex problem including parameter estimation and
disturbance attenuation.
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